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Genome-wide association studies (GWAS) have
found few common variants that influence fasting
measures of insulin sensitivity. We hypothesized that
a GWAS of an integrated assessment of fasting and

dynamic measures of insulin sensitivity would de-
tect novel common variants. We performed a GWAS
of the modified Stumvoll Insulin Sensitivity Index (ISI)
within the Meta-Analyses of Glucose and Insulin-Related
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Traits Consortium. Discovery for genetic association was
performed in 16,753 individuals, and replication was
attempted for the 23 most significant novel loci in
13,354 independent individuals. Association with ISI was
tested in models adjusted for age, sex, and BMI and in a
model analyzing the combined influence of the geno-
type effect adjusted for BMI and the interaction effect

between the genotype and BMI on ISI (model 3).
In model 3, three variants reached genome-wide signi-
ficance: rs13422522 (NYAP2; P = 8.87 3 10211),
rs12454712 (BCL2; P = 2.7 3 1028), and rs10506418
(FAM19A2; P = 1.9 3 1028). The association at NYAP2
was eliminated by conditioning on the known IRS1 insulin
sensitivity locus; the BCL2 and FAM19A2 associations
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were independent of known cardiometabolic loci. In con-
clusion, we identified two novel loci and replicated known
variants associated with insulin sensitivity. Further stud-
ies are needed to clarify the causal variant and function at
the BCL2 and FAM19A2 loci.

Genome-wide association studies (GWAS) have identified
common genetic variants associated with type 2 diabetes
(1), a disease marked by a reduction in b-cell function and
insulin sensitivity (2). While both b-cell function and in-
sulin sensitivity traits are partly heritable, GWAS have
demonstrated relatively few single nucleotide polymor-
phisms (SNPs) associated with insulin sensitivity (3).

Traits used to estimate insulin sensitivity from fasting
measurements in prior large GWAS, including fasting
insulin and the HOMA–insulin resistance (HOMA-IR),
demonstrate approximately half the heritability of traits
that incorporate both fasting and dynamic assessments of
insulin sensitivity following a glucose load (4). More-
over, there is only modest genetic correlation between
HOMA-IR and measures of insulin sensitivity by euglyce-
mic clamp, which is considered the gold standard measure
of peripheral insulin sensitivity (5,6). Thus, an alternative
approach to discover new common genetic variants asso-
ciated with insulin sensitivity is to perform GWAS using a
dynamic measure of whole-body insulin sensitivity. As an
example, a recent GWAS identified a novel insulin sen-
sitivity locus at NAT2 using euglycemic clamp and insulin
suppression test techniques in 2,764 subjects, with repli-
cation in another 2,860 individuals (7). However, these
direct, whole-body measures of insulin sensitivity are
time- and resource-intensive interventions, which limits
the feasible sample size of such experiments. Indices de-
rived from an oral glucose tolerance test that integrate
fasting and dynamic measures of insulin sensitivity rea-
sonably approximate euglycemic clamp measures and can
be applied in existing large cohorts with glycemic traits,
potentially increasing the statistical power to detect novel
variant associations.

We tested the hypothesis that a well-powered GWAS
would detect common genetic variants for the modified
Stumvoll Insulin Sensitivity Index (ISI). Insulin sensitivity
assessed by the euglycemic-hyperinsulinemic clamp (aver-
age glucose infusion rate/average plasma insulin concen-
tration [M/I]) has a stronger correlation with the ISI than
with HOMA-IR (r = 0.79 vs. 0.59, respectively) (8). In ad-
dition, the ISI is well correlated (r = 0.69) with M/I, even
when calculated using only fasting insulin values and glu-
cose and insulin values 120 min after a 75-g oral glucose
load (9); this modified version is widely available in existing
cohorts, providing a larger sample size for association anal-
yses than the sample size that would be available if indices
requiring additional time points were used. We further
hypothesized that a subset of these common genetic var-
iants would influence the ISI independently or through
their effect on BMI. Thus we tested the association of

the modified ISI in statistical models without adjusting
for BMI, in statistical models adjusting for BMI, and in a
validated model (10,11) analyzing the combined influence
of the genotype effect adjusted for BMI and the interaction
effect between the genotype and BMI on ISI.

RESEARCH DESIGN AND METHODS

Cohort Descriptions
The cohorts participating in the Meta-Analyses of Glucose
and Insulin-related Traits Consortium (MAGIC) contrib-
uted a total of 30,107 individuals to the analyses. Detailed
information on the study cohorts and methods is provided in
Supplementary Table 1. All participants were of white Euro-
pean ancestry from the United States or Europe and did not
have diabetes. All studies were approved by local research
ethic committees, and all participants gave informed consent.

Modified Stumvoll ISI
Missing trait data were not imputed, and outliers were
not excluded from analyses. The ISI was calculated as
previously described (9), according to the following formula:

0:156 2
�
0:0000459 3 insulin2h½pmol=L�

�

2 ð0:000321 3 insulinfasting½pmol=L�
�

2 ð0:0054 3 glucose2h½mmol=L�
�

Discovery Effort: GWAS
Cohorts that were able to contribute genome-wide geno-
typing results during the course of the project were in-
cluded in the discovery effort. These were the Framingham
Heart Study (FHS), Sorbs, the Finland–United States
Investigation of NIDDM (FUSION), the Cardiovascular
Health Study (CHS), Ludwigshafen Risk and Cardiovascular
Health (LURIC) study, the Uppsala Longitudinal Study of
Adult Men (ULSAM), and Metabolic Syndrome in Men
(METSIM) study. For the discovery GWAS, all samples
with call rates ,95% were excluded, and SNPs departing
from Hardy-Weinberg equilibrium (at P , 1026), genotype
rate ,95%, or minor allele frequency ,1% were excluded.
Poorly imputed SNPs were excluded if R2 ,0.3 or proper-
info was ,0.4.

Each SNP was tested for association with ISI in three
different additive genetic models: model 1 was adjusted
for age and sex; model 2 was adjusted for age, sex, and
BMI; and model 3 analyzed the combined influence of
the genotype effect adjusted for BMI and the interaction
effect between the genotype and BMI on ISI (10,11). The
associations in model 3 result from a test with two de-
grees of freedom. When no interaction is present, the
additional degree of freedom results in a modest loss of
statistical power. When interaction is present, however,
the statistical power of the model is greater (11). To ad-
just for differences in insulin measurement between
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cohorts, effect estimates were normalized to the SD of
the ISI in each cohort (Supplementary Table 1). A ro-
bust estimate of the standard error was calculated in
the interaction analysis using ProbAbel, QUICKtest, or
generalized estimating equations using the R geepack
package. An inverse-variance meta-analysis using METAL
was performed on the b coefficient/SD from each
cohort.

Following meta-analysis, SNPs with total sample size
less than 8,500 (approximately half of the maximum
sample size) or with heterogeneity P values #1026 (a
value chosen to take into account multiple hypothesis
testing but below the level of strict Bonferroni correction)
in the meta-analysis of the discovery cohorts were re-
moved. Genomic correction of cohort-specific association
statistics (i.e., correction for each individual study) was
performed. In total, up to 2.4 million SNPs were meta-
analyzed for association with ISI in the discovery effort.

Selection of SNPs for Replication
Candidate SNPs for replication were identified by their
association P value #1027 in one or more of the analysis
models. For gene loci with multiple replication candidates,
the SNP with the lowest P value and any other SNP in low
linkage disequilibrium (LD; r2 , 0.5) with the index SNP
in Europeans were retained. Using these filters, 23 unique
candidate SNPs from 23 loci were identified for replica-
tion. The SNP Annotation and Proxy Search site was used
to find up to three proxies in high LD (r2 . 0.8) in
Europeans for each candidate SNP.

Replication Effort
Cohorts that did not contribute to the discovery effort
but were able to contribute association results during
the course of the project were included in the replication
effort. These were the European Network on Functional
Genomics of Type 2 Diabetes (EUGENE2) study, Amish
Studies, the Relationship between Insulin Sensitivity and
Cardiovascular Risk Study (RISC), the Tübingen Family
Study for Type 2 Diabetes (Tübingen), Inter99 Study, the
Segovia Study, the Pizarra Study, the Botnia Study, the
1936 Birth Cohort, and the Ely Study. Genotype data
were obtained using in silico data from preexisting GWAS
or de novo genotyping. In replication cohorts, SNPs with a
minor allele count (MAC) ,20 were excluded. Additional
details of the replication cohort effort are provided in Sup-
plementary Table 1.

Combined Meta-analysis
We required the absence of heterogeneity in the combined
analysis of discovery and replication cohorts (P . 1026) as
well as nominal significance (P , 0.05) in the replication
effort and genome-wide significance (P , 5 3 1028) in the
combined meta-analysis for statistical evidence of association
between a novel SNP and the ISI. To assess the effect of
removing lower-frequency SNPs in model 3, a sensitivity anal-
ysis was performed using the MAC ,20 filter on a cohort-
wise basis in both the discovery and replication cohorts.

Assessment for Association of Known Insulin
Sensitivity Loci With ISI
The associations of published insulin sensitivity loci were
tested for association with the ISI in the discovery cohorts.
Loci associated with fasting insulin without (12) and with
adjustment for BMI (3,12), with fasting insulin using the
approach in model 3 (10), and with direct measures of in-
sulin sensitivity were included in these analyses (7). The
published results for associations with fasting insulin with
or without BMI adjustment (N = ;50,000–100,000) (3,12)
or exploiting potential BMI-by-gene interaction (model 3;
N = ;80,000) (10) used the same statistical approach as
in the current study but were derived in a sample size ap-
proximately three to six times larger than that of the cur-
rent study discovery cohort (N = ;16,000). The sample
sizes of the published fasting insulin analyses were much
greater because only fasting insulin and BMI phenotypes
were required for cohort participation. To analyze the as-
sociation with fasting insulin and ISI in a comparable sam-
ple, we also examined the subset of discovery cohorts that
contributed to the current assessment of ISI and prior
assessments of fasting insulin: FHS, Sorbs, FUSION,
and CHS. In models 2 and 3, only data from FHS, Sorbs,
and FUSION were analyzed because participant-level BMI
data were not available in CHS. A binomial sign test was
used to determine whether the expected direction of the
effect for these published loci with ISI occurred more
often than by chance.

Conditional Analyses and Assessment of the
Association of Top Findings With Direct Measures
of Insulin Sensitivity
Findings that reached genome-wide significance were
assessed for association with direct measures of insulin
sensitivity in the Genetics of Insulin Sensitivity (GENESIS)
consortium (7). Direct measures of insulin sensitivity were
inverse normal transformed M value in cohorts with eugly-
cemic insulin clamp assessments and inverse normal trans-
formation of the steady state plasma glucose from cohorts
with an insulin suppression test. These two traits are
highly correlated (r = 20.85; P , 0.001) (13), and tests
of association with the direct measure of insulin sensitivity
showed no evidence of heterogeneity (P value for hetero-
geneity = 0.34 for the BCL2 variant and 0.66 for the
FAM19A2 variant). Therefore, we did not perform sepa-
rate tests of association in the smaller subsets of data with
either the M value or the insulin suppression test pheno-
type. Statistical models were adjusted for age, sex, and BMI.

The top findings of the ISI analyses were also assessed
in a MAGIC association analysis from Manning et al. (10)
with fasting insulin using the approach in model 3. These
ISI variants were only available in the discovery cohort
from Manning et al. (n = 38,649 for rs12454712; n =
45,290 for rs10506418). We also performed association
analyses with fasting insulin and ISI in a subset of the
discovery cohort—FHS, Sorbs, and FUSION—to ascertain
values in a comparable sample.
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Approximate conditional analyses were performed to
understand whether known loci contributed to the associ-
ations of novel findings with the ISI (14). These analyses
were based on the summary-level statistics from the meta-
analysis and the estimated LD using individual-level geno-
type data from the FHS discovery cohort. The software
implementation for this approach does not incorporate
the interaction term from model 3, and therefore condi-
tional analyses were not performed in model 3.

RESULTS

The demographic characteristics of the participants in-
cluded in the discovery and replication efforts are pre-
sented in Table 1. In total, the discovery, replication, and
combined meta-analyses included up to 16,753, 13,354,
and 30,107 participants, respectively.

Using a variance component approach implemented in
SOLAR software (15), the heritability of the ISI (H2r6 SE)
in related FHS participants (n = 2,833) was very similar
without or with adjustment for BMI (34.6 6 6.8%; P =
2.8 31028 and 33.4 6 6.8%; P = 1.0 31026, respectively).
Within the ULSAM discovery cohort, the Spearman corre-
lation between the ISI and M value from the euglycemic-
hyperinsulinemic clamp was 0.71 (Fig. 1), consistent with
reports from the literature (9); the Spearman correlation
between ISI and fasting insulin was 20.49 (Fig. 1).

When tested in the full discovery cohort, 12 of 13 loci
previously associated with fasting insulin in the literature
(12) (P = 0.002 for binomial sign test) and 13 of 15 loci
previously associated with fasting insulin after adjusting
for BMI in the literature (3,12) (P = 0.004 for binomial
sign test) showed the expected direction of effect with
the ISI in the discovery cohorts (Supplementary Table 2).
When these associations were examined in a subset of the
current study discovery cohort (Supplementary Table 2),
statistical significance was reduced, but effects at each
loci remained in the expected direction (10 of 13 loci for
ISI vs. fasting insulin without BMI adjustment, P = 0.03 for
binomial sign test; 11 of 15 loci for ISI vs. fasting insulin
with BMI adjustment, P = 0.04 for binomial sign test).
Using a variant in LD with rs1208 (rs7815686; r2 =
0.67), we also found the expected direction of effect with
ISI in the discovery cohorts (n = 16,753) at the NAT2 locus
(model 1; b= 20.029; P = 9 3 1023) (7).

The QQ plots for models 1, 2, and 3 are shown in Sup-
plementary Figs. 1–3, respectively. Measures of genomic
control were consistent with low inflation (model 1 lGC =
1.015; model 2 lGC = 1.006; model 3 lGC = 1.079). While
genomic control was used to correct for each individual
study, no additional corrections were applied to the meta-
analysis results. The separate results of the discovery and
replication results for model 1 (adjusting for age and sex),
model 2 (adjusting for age, sex, and BMI), and model
3 (adjusting for age, sex, and BMI and analyzing the com-
bined influence of the genotype effect adjusted for BMI
and1the interaction effect between the genotype and BMI
on ISI) are shown in Supplementary Table 3. Four SNPs

selected from the discovery effort reached nominal signif-
icance (P , 0.05) in the replication analyses: rs13422522
(NYAP2) in models 1, 2, and 3; rs12454712 (BCL2) in mod-
els 2 and 3; rs10506418 (FAM19A2) in model 3; and
rs6013915 (PFDN4) in model 3. Although the association
with rs4548846 (CDH13) reached nominal significance in
the replication effort for model 3, the association was in the
opposite direction of effect, as in the discovery analyses;
consequently, the association of this variant also had high
heterogeneity in the combined meta-analysis.

We compared the b coefficients for the 22 SNPs iden-
tified in the discovery effort (rs4548846 [CDH13] was
excluded given its high heterogeneity) with fasting in-
sulin and ISI in a subset of the discovery cohort. Pearson
correlations between the b for fasting insulin and the b
for ISI were 20.494 in model 1, 20.797 in model 2,
and20.461 (for SNP effect) and20482 (for interaction)
in model 3.

The results of the combined discovery and replication
cohort meta-analyses in each of the three models are shown
in Table 2 and Supplementary Table 3. No association
reached genome-wide significance in model 1. In model 2,
rs13422522 (NYAP2; P = 1.8 3 10211) and rs12454712
(BCL2; P = 1.9 3 1028) achieved genome-wide significance.
In model 3, rs13422522 (NYAP2; P = 8.9 3 10211),
rs12454712 (BCL2; P = 2.7 3 1028), and rs10506418
(FAM19A2; P = 1.9 3 1028) reached genome-wide signifi-
cance. In model 3, rs6027072 (ARHGAP40; P = 4.43 1029)
also reached genome-wide significance but did not achieve
nominal significance in the replication cohort, and
rs6013915 (PFND4) had high heterogeneity in the com-
bined meta-analysis of discovery and replication cohorts
(P for heterogeneity = 6.033 1027); therefore associations
with these SNPs were not included as trustworthy findings.

Hence, rs13422522 (NYAP2), rs12454712 (BCL2), and
rs10506418 (FAM19A2) were the three SNPs that reached
our a priori requirements for claiming statistical evidence.
The association at rs13422522 (NYAP2) was in LD (r2 =
0.7) with previously reported results at the known insulin
sensitivity signal rs2943641 (IRS1) (10), and the associa-
tion with the ISI in model 2 was greatly reduced by con-
ditioning rs13422522 on rs2943641 in the discovery cohort
(b = 20.066 6 0.01; P = 4.29 3 1028 to b = 20.025 6
0.01; P = 0.01). Thus, this SNP was considered a reflection
of the known IRS1 signal and not an independent signal.
The associations for rs12454712 (BCL2) and rs10506418
(FAM19A2) with the ISI were consistent across the discov-
ery and replication cohorts (Supplementary Figs. 4 and 5,
respectively). When stratifying by BMI, the effect of the
minor allele (A) at rs10506418 (FAM19A2) on insulin sen-
sitivity was negative at lower BMI and became positive and
stronger with increasing BMI (Fig. 2), and the effect of the
major allele (T) at rs12454712 (BCL2) on ISI was more
negative with increasing BMI (Fig. 3).

The genomic inflation of models 1 and 2 was low and
slightly higher in model 3. Because the same individuals
were used in each model, inflation in model 3 was unlikely
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Figure 1—Correlation of ISI with the M value from the insulin clamp (A) and fasting insulin (B) in ULSAM. Insulin sensitivity was measured
within the ULSAM discovery cohort (n = 1,025) using a hyperinsulinemic-euglycemic clamp (M value), the modified Stumvoll ISI, and fasting
insulin. The ULSAM cohort contains only men, and individuals with known diabetes were excluded from these analyses. For the compar-
ison of the M value with ISI, the Pearson correlation was 0.69 and the Spearman correlation was 0.71, which are consistent with prior
published reports. For the comparison of the ISI with fasting insulin, the Pearson correlation was 20.45 and the Spearman correlation
was 20.49.
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to arise from population stratification. We performed an
additional sensitivity analysis that applied the MAC ,
20 filter to both the discovery and replication cohorts
(Supplementary Table 4), which tended to reduce the sta-
tistical significance of associations with high heterogene-
ity and slightly reduced the statistical significance of the
association at the FAM19A2 locus in model 3 without
markedly reducing the magnitude of effect or affecting
heterogeneity (b = 20.62 6 0.13; P = 1.9 31028; P for
heterogeneity = 0.11 to b =20.586 0.13; P = 8.031027;
P for heterogeneity = 0.07). The sample size for the
FAM19A2 locus association in model 3 was 462 individuals
fewer when the MAC filter was applied in the discovery
cohorts versus when the minor allele frequency filter was
applied, and the resulting loss in power was likely respon-
sible for the slight reduction in statistical significance.

Conditioning the results at either variant with known
signals at least 1 Mb away did not attenuate the as-
sociation with the ISI in the discovery cohorts of model 2
(a full description is provided in Supplementary Table 5).
The rs10506418 (FAM19A2) variant was not associated
with fasting insulin using model 3 in a separate GWAS
result (10) or with direct measures of insulin sensitivity
in GENESIS. The major allele (T) of rs12454712 (BCL2),
which was associated with lower insulin sensitivity in this
study, was also associated with a trend toward higher
fasting insulin in a separate GWAS result using model
3 (SNP effect 20.006 6 0.003; interaction effect 0.001 6
0.001; P = 5.9 3 1025; N = 38,649) (10). Similar trends
were observed when the variant was tested for association
with ISI and fasting insulin in the same discovery cohort
subset (Supplementary Table 5).

DISCUSSION

In a study of over 30,000 participants, we found novel,
independent, genome-wide significant associations for the
ISI at rs12454712 (BCL2) and rs10506418 (FAM19A2).
Strengths of this study’s design include a large sample
size, individuals with glycemic and metabolic phenotyp-
ing, high-quality genomic data, and use of traditional and
contemporary statistical models to account for the influence
of BMI on insulin sensitivity. In addition, our approach
targeted a phenotype not previously examined in GWAS:
the modified Stumvoll ISI. By incorporating glucose and
insulin measures before and after a glucose load, this phe-
notype captures information that fasting assessments such
as HOMA-IR or insulin alone would not. Indeed, the cor-
relation between ISI and the M value is higher than that
between the M value and fasting insulin (16), which has
been used in prior genetic studies of insulin sensitivity
(10,12). At the same time, the use of measures obtained
at only two time points (fasting and 120 min into an oral
glucose tolerance test) permitted the assembly of the large
sample size required to achieve adequate statistical power.

Several findings serve as positive controls for our
results and demonstrate that the ISI is a robust measure
of fasting and whole-body insulin sensitivity. First, we
observe a strong correlation of ISI with direct measures
of insulin sensitivity. Second, we show that the ISI can
detect genetic influences on measures of fasting insulin
sensitivity (3,10,12), generally ascribed to hepatic physi-
ology, as well as on measures of whole-body insulin sen-
sitivity, which also incorporates contributions from
muscle and adipose tissue. Integrated measures of insulin
sensitivity may have clinical relevance, since a reduction
in peripheral insulin sensitivity may be an early contrib-
utor to the development of type 2 diabetes (17–19).

Consistent with prior genetic explorations of insulin
sensitivity (10), the association of variants at the BCL2
and FAM19A2 loci became stronger and genome-wide sig-
nificant after accounting for the effect of BMI on ISI.
Notably, the ISI can be calculated with or without BMI
in the formula, and the correlation of the ISI with M/I is

Figure 2—The effect of rs10506418 (FAM19A2) on insulin sensitiv-
ity by BMI category. The effect of the minor allele (A) at rs10506418
(FAM19A2) on the ISI is shown by BMI category. At a low BMI
(<20 kg/m2), the effect is negative. At each category of increasing
BMI above 20 kg/m2, the effect is positive and stronger.

Figure 3—The effect of rs10506418 (BCL2) on insulin sensitivity by
BMI category. The effect of the major allele (T) at rs10506418
(BCL2) on the ISI is shown by BMI category. At each category of
increasing BMI, the effect is negative and stronger.
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greater when BMI is included (r = 0.69 vs. 0.79) (8,9). We note
that the effect of these loci on insulin sensitivity is modest,
consistent with published findings on other common genetic
variants for glycemic traits, such as glucose (12) and fasting
insulin (3,10,12). Yet our findings are meaningful because
they provide a more complete understanding of the contri-
bution of common genetic variations to insulin sensitivity.

The existing literature bolsters our finding of BCL2 as
a novel candidate insulin sensitivity locus. The major allele
(T) at rs12454712, which was associated with lower in-
sulin sensitivity in our analysis, has been previously asso-
ciated with type 2 diabetes in a multiethnic GWAS (odds
ratio 1.09 [95% CI 1.05–1.11]; P = 2.1 3 1028) (20) in
analyses adjusted for BMI. Further, this same variant was
recently associated with higher BMI-adjusted waist-to-hip
ratio in women (b = 0.035; P = 1.1 3 1029; N = 96,182)
but not in men (b = 0.007; P = 0.25; N = 73,576) (21). All
these findings suggest that the metabolically deleterious
effects of the BCL2 locus become more evident after adjust-
ing for BMI. Last, we find that the statistical association of
rs12454712 (BCL2) is stronger with the ISI than with fast-
ing insulin (10). Notably, the published fasting insulin re-
sults were from a study much larger than ours. The ability
of the ISI to detect a genome-wide significant finding in a
smaller sample suggests that the BCL2 locus may have a
greater influence on insulin sensitivity when fasting and
postprandial phenotypes are assessed together.

The mechanism by which BCL2 influences insulin sensi-
tivity remains unclear. The BCL2 family of proteins regulate
apoptosis through control of mitochondrial permeability
(22). Mouse models suggest that inhibiting Bcl2 improves
glucose tolerance through effects on pancreatic b-cells (23).
Conversely, pharmacological inhibition of the BCL2 pro-
tein causes hyperglycemia among a subset of patients with
chronic lymphocytic leukemia (24), but the mechanism of
this observation is unknown. By contrast, there is little direct
published literature to support the role of FAM19A2 in in-
sulin sensitivity. We found that the association of the minor
allele (A) at the FAM19A2 locus with reduced insulin sensi-
tivity was detected at BMI,30 kg/m2. This may suggest the
variant is more deleterious among individuals with lower
levels of adiposity. While BCL2 and FAM19A2 are the closest
genes to rs12454712 and rs10506418, respectively, we
have not excluded other genes in the region (Supplemen-
tary Figs. 6 and 7). Additional in silico findings at the
BCL2 and FAM19A2 variants are provided in Supplemen-
tary Table 5.

We recognize limitations to our study. First, anal-
yses were performed exclusively in white individuals
of European ancestry. Exploring these loci in other racial
and ethnic groups is necessary. Second, we used an es-
timate of whole-body insulin sensitivity derived from
measures of glucose and insulin after a glucose load,
rather than direct measures of insulin sensitivity. The
wide availability of the ISI provided increased statistical
power of the association analyses relative to that of other
indices that are better correlated with euglycemic measures

of insulin sensitivity, such as the Matsuda Index (25). As-
sessment of our novel findings in the GENESIS consortium
suggests that the ISI may be capturing different informa-
tion on insulin sensitivity than that provided by the insulin
clamp or the insulin suppression test, or that the power in
the GENESIS analyses was limited to detect this associa-
tion. Third, conditional analyses could not be performed in
model 3, which would have been the best method of assess-
ing the dependence of the signals at BCL2 and FAM19A2.
However, the LD for each variant with other known glu-
cose and insulin loci in the region was low, and the nom-
inally significant associations of the BCL2 and FAM19A2
variants with ISI were stable after conditioning in model
2, suggesting that analyses in model 3 would have prob-
ably confirmed secondary loci. Fourth, given our desire for
the early dissemination of these results, no experimental
attempts at determining the causal gene and mechanisms
of action in our novel candidate insulin sensitivity loci
were performed.

In conclusion, we identified two novel candidate
insulin sensitivity loci through a GWAS of the modified
Stumvoll ISI. Our results demonstrate that the ISI is a
robust measure of fasting and whole-body measures of
insulin sensitivity and suggest that genetic variation in
the FAM19A2 and BCL2 loci influence insulin sensitiv-
ity. While further functional work is needed to clarify
the causal genes and mechanisms of action of these loci,
our work and the published literature provide support
for genes in these loci having an effect on human glycemic
metabolism.
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